
Locally Linear Embedding for Markerless Human Motion Capture
using Multiple Cameras

Therdsak Tangkuampien Tat-Jun Chin∗

Institute of Vision Systems Engineering,
Monash University, Victoria, Australia.

{therdsak.tangkuampien tat.chin}@eng.monash.edu.au

Abstract

We investigate the possibility of applying non-linear
manifold learning techniques to aid in markerless human
motion capturing. We hypothesize that the set of segmented
binary images (in a constrained environment) of a person
in all possible poses lie on a low dimensional manifold in
the image space. Since it is not feasible to densely sample
the manifold by capturing real life images, we propose to
learn the manifold by using synthetic images. An accurate
3D mesh of the actor can be used to generate the synthetic
3 dimensional virtual data. A set of poses (a collection of
hierarchical joint angles defining the stance of a person at
a point in time) ranging the space of possible human mo-
tion is used to animate the mesh and the synthetic images
are then captured by virtual cameras. We hypothesize that
these vectorized synthetic images lie on a low dimensional
manifold shared by the pose vectors. We then align the syn-
thetic image and pose pairs to form a common manifold by
constraining them to be equivalent. Given a new set of real
images of the actor, the system can then project the captured
image onto the aligned common manifold and determine the
closest synthetic poses to use to linearly generate the out-
put pose. Our experiments exhibit promising results for our
method.

1. Introduction

The ability to realistically capture human motion

presents numerous opportunities for real world applica-

tions, ranging from human computer interaction interfaces

to computer animation and control [9] in movies and com-

puter games. Currently to accurately capture human mo-

tions, magnetic or optical markers are systematically at-
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tached to an actor and an expensive calibrated system is

used to capture the positions of these markers as the ac-

tor performs the required motions. The main disadvantages

of attaching markers are the restriction imposed on the ac-

tor’s motion and the cost of a system specifically designed

to track the markers.

Markerless motion capture from camera images usually

involves generating voxel data [15, 11, 4] of the actor from

multiple camera images. The joint orientations of the actor

are then determined from the voxels at each time instance

and a tracking filter, such as the Kalman filter [19] is applied

to the captured joints to incorporate temporal constraints.

We approach the problem of camera based motion capture

differently and view it as a semi-supervised manifold learn-

ing problem. We plan to develop a flexible and inexpensive

markerless multiple cameras capturing system that will be

able to capture human poses without preprocessing to gen-

erate voxel data.

We investigate the possibility of applying non-linear

manifold learning techniques like Locally Linear Em-

bedding (LLE) [14] or Semi-definitive Programming

(SDE) [17, 18, 16] to aid in motion capturing. We hypoth-

esize that the set of segmented images (in a constrained en-

vironment) of a person in all possible poses lie on a low di-

mensional manifold, Mi, in the image space, and that their

corresponding poses (collection of joint angles) also lie on a

low dimensional manifold Mp, in the pose space. This in-

tuition is based on the idea that in a constant and controlled

environment, the images of an actor captured by cameras

with static intrinsic and extrinsic parameters should mainly

be dependent on the current pose of the person at that par-

ticular time. We then align image and pose pairs to form a

common manifold, Mc, by constraining them to be equiva-

lent on that manifold. Given a new set of images of the ac-

tor, we project the image data onto Mc using the approach

of [6]. On Mc, the poses with corresponding images that

are most similar to the projections can be determined and

used to linearly generate the output poses of the actor.

Since it is not feasible to densely sample Mc nor Mp
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by capturing real life images and determining the underly-

ing poses (furthermore, we need a motion capture system

to achieve this), we propose to learn them by using syn-

thetic images and their corresponding poses. An accurate

3D mesh of an actor can be used to generate the synthetic

3 dimensional virtual data. A set of poses (a collection of

hierarchical joint angles defining the stance of a person at

a point in time) ranging the space of possible human mo-

tion is used to animate the mesh and the synthetic images

are then captured by virtual cameras with the same intrinsic

and extrinsic parameters as the real-world cameras.

Our technique is similar to [12] in that given a set of sil-

houettes of an actor in image space during post-processing,

the system must determine the synthetic pose that are clos-

est to it in pose space. The search in that case is performed

on a motion capture database. The disadvantage of that

method is that the output pose is constrained to a subspace

spanned by the poses in the motion capture database. We

present a manifold projection technique that will not only

be able to determine neighbourhood criteria in pose space

from image data, but the pose distances between them as

well. We achieve this by learning a lower dimensional man-

ifold (Mc) where the pose distance ratios between neigh-

bours are preserved. During post-processing, the input can

be projected onto Mc where the distance ratios to the k-

nearest images can be found. Since image and pose pairs

are aligned on Mc, the same distance ratios can then be ap-

plied to linearly combine the corresponding k-nearest poses

to generate the output pose.

2. Motion Capture System Overview

The main steps performed within our markerless camera

based motion capture system are summarized below:

1. Accurate Mesh Generation of the Actor (Section 1)
In the initialization step, a laser scanner is used to ob-

tained accurate point cloud data of the actor. Radial

Basis functions [2, 3] are fitted to the point cloud and

re-sampled to generate a static mesh of the actor in

virtual space. This mesh is skinned [10] to create a

deformable mesh in DirectX format.

2. Generate Training Data with the Mesh (Section 4)
A training motion file containing poses sampled from

all the possible stances reachable by the human skele-

ton is generated. Each pose in the training set is loaded

into the deformable mesh to generate its representation

in virtual space.

3. Set up Virtual Cameras in Virtual Space
Virtual cameras with the same intrinsic and extrinsic

parameters as the real cameras (for motion capture) are

created in virtual space. For each pose, the set of syn-

thetic images of the 3D mesh as it would appear in

the real cameras are captured, segmented and linked to

the original pose. All the other parameters like light-

ing, camera positions, etc are kept constant during the

training process.

4. Generating the Distance Preserving Aligned Mani-
fold Mc (Section 5)
Determine the distance preserving aligned manifold

Mc shared by the synthetic images and their corre-

sponding poses via LLE [6]. This is possible because

each set of synthetic images captured in the virtual

cameras is mainly dependant on the pose that was

loaded into the mesh (all the other variables are kept

constant).

5. Pose Estimation from Manifold Projection
Once the system has been trained with synthetic data,

real images of the person can be captured by real cam-

eras. The captured images are then pre-processed and

projected onto Mc, where the k-nearest images and

the relative distances between them on Mc can be de-

termined. The same distance ratios can then be used to

linearly combine the corresponding k-nearest poses to

generate the output pose.

3. Creating an Accurate Mesh of the Actor

Before the motion of the actor can be captured, the sys-

tem needs to generate synthetic training data using an ac-

curate representation of the actor in virtual reality. We

create an accurate mesh representation of the actor using

point cloud data obtain from the Riegl LMS-Z420i Terres-

trial Laser Scanner. At system initialization, the front and

back laser scans of the actor are recorded and combined.

A radial basic function (RBF) is fitted to the point cloud

data [2] and then re-sampled to create an accurate mesh of

the actor. A generic skeletal structure is fitted inside the ac-

curate mesh, which is then skinned [10] and transformed to

a deformable mesh in DirectX format. See Figure 1 and 2

for example results. In our project we used an evaluation

version of Farfield Technology’s fastRBF Matlab toolbox

to generated the accurate static mesh.

4. Generating Virtual Data for Motion Capture

Using the accurate deformable mesh, a set of joint ori-

entations ptr, densely sampled from the space of possible

human motion, can be applied to create 3D virtual repre-

sentation of the actor. Virtual cameras, with the same in-

trinsic and extrinsic parameters as the real cameras to be

used in motion capture are then created. From the virtual
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Figure 1. Resultant accurate mesh of an ac-
tor generated by sampling the Radial Basis
Function of point cloud data obtained from a
laser scanner.

Figure 2. Optical Marker Based Motion cap-
ture data (from the Carnegie Mellon Univer-
sity Graphics Lab Motion Capture Database)
re-targeted to the deformable accurate mesh
of the actor.

views, the system can then determine what the actor’s sil-

houette, Ii, is expected to look like for each pose ptr
i in each

different cameras. Given a new set of images I of the ac-

tor captured form the real cameras, the system can segment

the data and locate k-nearest silhouette images in the train-

ing set by using a silhouette similarity measure, F (Ii, Ij),
between two images Ii and Ij [12]. The motion capture

system must then locate its k-nearest poses in the synthetic

pose set as determined by a pose distance metric in the pose

space, using only image data. We define our pose distance

metric, d(pi, pj), between two poses pi and pj , as the sum

of euclidean distances between the joint angles in the hu-

man body. We approach this problem of mapping between

images and poses by projecting the input image I onto a

common manifold Mc which was trained to preserve the

neighbourhood structure of both training images and their

corresponding poses.

4.1 Synthetic Images Pre-processing

Before learning Mc using the training images and poses,

we pre-process each set of synthetic images to convert it to

a high dimensional vector Xtr
i in RD. The pre-processing

steps can be summarized as follows (see Figure 3):

1. Image Segmentation and cropping - For each pose

ptr
i , the set of synthetic images captured by the m vir-

tual cameras are segmented and cropped to enclose the

silhouettes as closely as possible.

2. Image Resizing Concatenation - All images are then

resized to 60×60 pixels and horizontally concatenated

to produce a single binary image Itr
i for each training

pose ptr
i . Finally, the concatenated images are vector-

ized to create a high dimensional column vector Xtr
i

for each pose ptr
i . We expect that resulting column

vectors generated by using different orderings of im-

age concatenations should work as well, as long as

the same procedure is consistently followed through-

out the system.

During motion capture, the real images are pre-processed

similarly to produce the high dimensional input vector X in

RD. The vector X is then projected onto the common mani-

fold for the determination of distance ratios and neighbours.

Figure 3. Pre-processing of the synthetic im-
ages to generate the training set Xtr.

5. Non-linear Manifold Learning and Align-
ment

In this section we show how Locally Linear Embedding

(LLE) can be applied to map both the synthetic images, Xtr
i

(in RD) and their corresponding poses, ptr
i , onto a common

low-dimensional manifold Mc in Rd, where d � D. Each

synthetic image and pose pair is then represented as Y tr
i on

Mc. We then show how a new input vector X can then be

projected onto Mc. The projection of X should have its
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corresponding Y on Mc, though Y does not exist explic-

itly since it was not in the training database. We perform a

euclidean distance search for the k-nearest neighbours of Y
by searching for the k-nearest neighbours in Y tr. We then

calculate the distance ratios between Y and its k-nearest

neighbours and use this distance ratio to linearly combine

in pose space.

5.1 Locally Linear Embedding for motion
capture

Locally Linear Embedding [14, 13] is a non-linear di-

mensionality reduction method whereby low dimensional

data are generated from a well-sampled high dimensional

set, whilst preserving euclidean distance ratio between lo-

cal neighbours. Basically, given the training set A, LLE

expresses each high dimensional vector Ai in the training

set as a linear combination of its k-nearest neighbours. A

cost function is then defined that measures the quality of

this reconstruction,

εr(W ) =
∑

i

|−→Ai −
∑

j

Wij
−→
Aj‖2 . (1)

The weight Wij summarizes the fraction of Ai in the train-

ing that can be synthesized from Aj in the same set. If the

vector Aj is not one of the k-nearest neighbours of Ai, then

Wij will be set to zero. Another constraint imposed by LLE

is that
∑

j Wij = 1, which together with equation 1 ensures

that the original neighbourhood structures are preserved on

the learned manifold. Once the matrix W has been calcu-

lated, LLE then regenerate a set of lower dimensional vec-

tors Bi in Rd by minimizing the embedding cost function,

εe(W ) =
∑

i

|−→Bi −
∑

j

Wij
−→
Bj |2 , (2)

subject to the constraint
(
BiB

T
i

)
= 1. The main difference

between this embedded cost function εe(W ) and the recon-

struction cost function εr(W ) is that we are now keeping

Wij constant, whilst varying the low dimensional vectors

in B. Bi and Ai are corresponding points on the learned

manifold and the original manifold, respectively. The real

advantage of LLE is the ability to solve this minimization

as an eigenvalue problem by finding the eigenvectors of the

matrix M , where

M = (I − W )(I − W )T . (3)

The lower dimensional representation B can then be ob-

tained by taking d eigenvectors of M with the smallest d
eigenvalues. Each eigenvector will then define a dimension

for B.

5.2 LLE for Manifold Alignment and Pro-
jection

Performing LLE manifold learning separately on Xtr

alone is not sufficient as it produces a neighbouring dis-

tance preserving manifold where the images and poses are

not aligned. That is the neighbours found on the manifold

are not neighbours in pose space. We solve this problem by

aligning the manifold with its pose space representation via

a technique proposed by [6, 5].

The problem of manifold alignment can be reformulated

as follows: Given 2 sets of corresponding high dimensional

vectors Xtr and ptr, how do we project both data sets onto

a common low-dimensional manifold Mc such that each

corresponding pair Xtr
i and ptr

i is constrained to be equally

represented by a common point Y tr on Mc? Furthermore,

how do we ensure that neighbourhood structures of both

Xtr and ptr are preserved on Mc? Provided that this com-

mon manifold can be found, given a new point X not in the

training set, we can then project it onto Mc and find the

closest neighbours in the training set. The output pose can

then be generated using linear distance ratios found on the

manifold, but in pose space. A mathematical formulation of

the combined matrix Z comprising of both Xtr and ptr and

the new input X is expressed below as

Z =
[

Xtr X
ptr p

]
. (4)

The problem of determining a human pose can then be re-

stated as a machine learning problem of calculating p in the

matrix Z. An aligned manifold is created by initially per-

forming LLE independently on the combined pre-processed

image set Xtr+ (n synthetic vectors and 1 input vectors)

and another on the pose vectors ptr (n synthetic poses),

Y X = LLE([Xtr X]) = LLE([Xtr+]) , (5)

Y p = LLE([ptr]) . (6)

After separately performing LLE, the weight matrix, and

therefore the M matrix (Equation 3) of both set (MX of

dimension of n + 1 by n + 1 and Mp of dimension of n by

n) can be calculated. Letting MX
(r1..r2,c1..c2)

represent the

matrix given by the intersection of the r1-th to r2-th rows

and the c1-th to c2-th columns, the projection of the two

manifold Y X and Y p onto a common manifold Y tr can be

achieved by combining MX and Mp as follows:

M tr+ =

[
MX

(1..n,1..n) + Mp
(1..n,1..n) MX

(1..n,n+1)

MX
(n+1,1..n) MX

(n+1,n+1)

]
(7)

The LLE aligned representation [Y tr Y ] of the vectors

[Xtr X] mapped to a common manifold can be found by
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taking the eigenvectors of M tr+ (The plus sign ‘+’ empha-

sizes the fact that the matrix M tr+ includes the input point

X whose correspondence in pose space is not known). This

will produce a low dimensional manifold where the cor-

responding training points in Xtr and ptr are constrained

to be equivalent on the common manifold. Furthermore,

the closest k neighbours and distance ratios (in pose space)

to the input image I (pre-processed to become X) can be

found by finding the nearest k neighbours of the mapped

point Y on the manifold. The neighbours are then used to

generate the output in pose space using the locally linear

distance ratios found on the aligned manifold.

6. Results

In this section we present supporting results to confirm

our intuition of a distance preserving (up to k neighbours)

aligned manifold. A synthetic training set ranging the joint

orientations attainable by the left arm is generated. The set

is then applied to the accurate mesh of the actor to generate

training data in virtual space. Two virtual cameras are set

up at 45 degrees from the front axis of the actor to capture

synthetic training images (Figure 6). The set of synthetic

Figure 4. Example of 4 synthetically concate-
nated images captured from virtual cameras.

images are then segmented, cropped, resized and rearranged

to create the training set Xtr. LLE is initially performed on

Xtr to calculate an unaligned lower dimensional manifold

in R3. R3 is chosen as the manifold’s dimension because

we are experimenting with a single ball and socket joint,

which has 3 degrees of freedom. As shown in Figure 5,

LLE can reduce the dimension of each set of synthetic im-

ages Itr
i to a 3 dimensional point Y tr

i in R3. As mentioned

previously, this manifold is not aligned and is not ideal for

neighbour selection in pose space. For realistic motion cap-

ture, we need to find a lower dimensional manifold Y tr in

R3 that is aligned with the pose set ptr. In the case of a sin-

gle ball and socket joint, the set of possible training poses in

ptr will span a unit sphere (Figure 6). The manifold learn-

ing process must therefore find a manifold Y tr in R3 such

Figure 5. Unaligned manifold in R3 calculated
from LLE using 12 neighbours on the set of
synthetic images with varying left arm orien-
tation.

that it is aligned with this unit sphere. This spherical align-

ment is achieved using the alignment technique discussed

in section 5.2. We initially perform LLE separately on Xtr

and ptr to obtain their corresponding M matrices, MX and

Mp respectively. We can find the aligned common matrix

M tr as follows:

M tr =
[

MX
(1..n,1..n) + Mp

(1..n,1..n)

]
. (8)

The equation above is simply a special case of Equation 7

without the last rows and columns representing the input

points with unknown representation in pose space. The 3

eigenvectors with the smallest eigenvalues of M tr can be

calculated and use as each dimension of the aligned lower

dimensional manifold Y tr in R3. The resultant aligned

manifold Y tr is shown in figure 7. To confirm that this

manifold is in fact aligned with the pose set ptr, we select

a random point Y tr
i (represented as the end point at the end

of the actor’s left arm on the sphere - figure 8) and locate

its nearest 150 neighbours using euclidian distances on the

aligned manifold. The neighbours’ corresponding represen-

tation in pose space are then highlighted by circles on the

unit sphere as shown below. To further emphasize the ben-

efit of finding neighbours using the aligned manifold Y tr,

we compare the same neighbour search to one without man-

ifold learning and show the nearest 150 neighbours using

euclidian distances in the pre-processed set Xtr (The eu-

clidian distance calculation on Xtr is exactly the same as

the hamming distance between the preprocessed segmented

images in Itr after cropping and resizing, but before image

rearrangement to the vector Xtr
i ). Note how almost half of

the 150 synthetic points found using Xtr
i do not correspond

to being neighbours in pose space (bottom highlighted part

of the sphere - figure 9). Finally we test our manifold learn-
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Figure 6. The set of synthetic poses ptr used
for training of the motion capture system.

ing technique with new synthetic images I , but remove its

representation in pose space p from the manifold learning

process and use that instead as the ground truth for error

analysis. The image I is preprocessed to X and appended to

Xtr to obtained the combined set Xtr+. The aligned M tr+

matrix is calculated using equation 5 and the the lower di-

mensional aligned manifold set Y tr+ generated. This pro-

cess is equivalent to projecting the new input point X (with

unknown pose space correspondence) onto a point Y on the

aligned manifold in R3. To generate the representation of

Y in pose space, we find that linearly generating the output

pose pout from 8-12 neighbours gives the least errors. The

Error function for this experiment ε(pout, p) is simply the

shifted inverse cosine of the dot product between the output

vector pout and the ground truth input vector p, and has a

range between 0 to 1.

ε(pout, p) =
cos−1(pout · p)

π/2
(9)

An error value ε(pout, p) of 0 indicates zero error and that

the pose vectors are completely aligned, where as an error

value of 1 indicates complete perpendicular misalignment

of 90 degrees. The resultant error plots on a test set Itst of

200 concatenated images generated from the pose test set

ptst are shown in figure 10. In the plot, we highlight the

maximum error of 0.1541, which converts to a maximum

error 13.87 degrees between the system’s output pose and

the ground truth test set ptst.

7. Discussions and Future Directions

In this paper we have presented ideas for a complete

camera based system for human motion capture. The real

Figure 7. LLE manifold Y rt aligned with the
sphere spanned by the pose set ptr.

advantages of our technique are its flexibility and lack of

constraints in terms of movement of cameras and system

initialization. There are also no need for any markers or pre-

processing of image data to voxels in 3D space. Taking into

account that it is possible to have constant preset intrinsic

camera calibrations, all that is needed every time the cam-

eras are moved around is to update the extrinsic parameters

and generate training data with the mesh and re-capture the

training images. The capturing accuracy can be easily in-

creased by adding more cameras to the motion capture sys-

tem, and concatenating the extra images in the training set.

An interesting idea that will need further investigation is the

ability for the system to capture human motion using train-

ing data from a generic mesh or mesh created from camera

images [8, 7], instead of using an accurate mesh obtained

from the laser scanner (Figure 1). This has the potential

of an extremely portable and inexpensive motion capturing

system, especially in areas of computer games and human

computer interaction. Imagine being able to buy a computer

game, which comes with 2-3 cameras, and only the extrinsic

parameters of the cameras are required as input by the user

at system initialization. Provided that good quality segmen-

tation can be achieved, then the images can be mapped to

the manifold and accurate poses found. The quality of the

motion captured generated will obviously not be as accurate

as the ones found by a marker based system, but the system

makes up for this shortfall in terms of lower cost, portability

and flexibility.

Future directions for out research includes extending the

training and test motions to include all the joints on the up-

per part of the body, and testing with real camera images
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Figure 8. Plot of the pose set ptr with the
nearest 150 neighbours found on the aligned
manifold Y tr highlighted with circles.

captured from firewire cameras. Currently the system uses

segmented binary data for training and testing, another im-

provement we plan to investigate is to extend the system

to work with colour image data. The system with then be

trained with a textured skinned mesh rather than using a

colourless mesh. The input images, in this case, will retain

the foreground colours during pre-processing. This may

further increase the accuracy of the system, without adding

further to processing time, as the input dimensions for man-

ifold learning would remain exactly the same as the case of

binary segmented images.

Another possible improvement for the system is its

speed. Currently when a new image is received, the sys-

tem needs to solve for the eigenvectors of an n+1 by n+1
matrix at each frame for N training points. Instead of recal-

culating the eigenvalues every frame, an out of sample ex-

tension for LLE[1] can be implemented, where new points

can be projected onto the manifold without fully recalcu-

lating for new eigenvectors. Another potential limitation of

the system is that temporal information is not used at all in

the capturing process. A possible way to fix this is to apply

Kalman filters to the system’s output joint angles in pose

space. Another interesting area to investigate is the possi-

bility of capturing motion from badly segmented data. In

this case we propose that the noise as a result of bad seg-

mentation will create a preprocessed input point X which

will lie off the aligned manifold generated via LLE. The

de-noising of the badly segmented data may then be per-

formed by projecting the badly segmented image onto the

Figure 9. Plot of the pose set ptr with the
nearest 150 neighbours found using the dis-
tances on the pre-processed set Xtr before
manifold learning. Note the incorrect neigh-
bours found at the bottom of the sphere.

manifold, and generating the output from the neighbours in

pose space.
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